JEE MAIN - Mathematics Hindi (2018 - 15th April Morning Slot - No. 22)

माना $$S=\left\{(\lambda, \mu) \in \mathrm{R} \times \mathrm{R}: f(\mathrm{t})=\left(|\lambda| \mathrm{e}^{\mid \mathrm{t}}-\mu\right)\right.$$. $$\sin (2|t|), t \in \mathrm{R}$$ एक अवकलनीय फलन है $$\}$$ तो $$\mathrm{S}$$ जिसका उपसमुच्चय है, वह है :
$$\mathrm{R} \times[0, \infty)$$
$$[0, \infty) \times \mathrm{R}$$
$$\mathrm{R} \times(-\infty, 0)$$
$$(-\infty, 0) \times \mathrm{R}$$

Comments (0)

Advertisement