JEE MAIN - Mathematics Hindi (2018 - 15th April Evening Slot - No. 17)

यदि $$\mathrm{I}_{1}=\int_{0}^{1} \mathrm{e}^{-x} \cos ^{2} x \mathrm{~d} x$$, $$ \mathrm{I}_{2}=\int_{0}^{1} \mathrm{e}^{-x^{2}} \cos ^{2} x \mathrm{~d} x$$ तथा $$\mathrm{I}_{3}=\int_{0}^{1} \mathrm{e}^{-x^{3}} \mathrm{~d} x$$ है, तो :
$$\mathrm{I}_{2}>\mathrm{I}_{3}>\mathrm{I}_{1}$$
$$\mathrm{I}_{2}>\mathrm{I}_{1}>\mathrm{I}_{3}$$
$$\mathrm{I}_{3}>\mathrm{I}_{2}>\mathrm{I}_{1}$$
$$\mathrm{I}_{3}>\mathrm{I}_{1}>\mathrm{I}_{2}$$

Comments (0)

Advertisement