JEE MAIN - Mathematics Bengali (2022 - 28th July Evening Shift - No. 8)
ধর $$x(t) = 2\sqrt 2 \cos t\sqrt {\sin 2t} $$ এবং $$y(t) = 2\sqrt 2 \sin t\sqrt {\sin 2t} ,\,t \in \left( {0,{\pi \over 2}} \right)$$ । তাহলে $${{1 + {{\left( {{{dy} \over {dx}}} \right)}^2}} \over {{{{d^2}y} \over {d{x^2}}}}}$$ এর $$t = {\pi \over 4}$$ এ মান হবে
$${{ - 2\sqrt 2 } \over 3}$$
$${2 \over 3}$$
$${1 \over 3}$$
$${{ - 2} \over 3}$$
Comments (0)
