JEE MAIN - Chemistry (2025 - 8th April Evening Shift - No. 6)
The freezing point depression of a 0.1 m aqueous solution of a monobasic weak acid HA is 0.20 °C. The dissociation constant for the acid is
Given: $K_f$(H2O) = 1.8 K kg mol−1, molality ≡ molarity
Explanation
Freezing Point Depression:
$ \Delta T_f = i \times K_f \times m $
Given:
$ \Delta T_f = 0.2 \, \text{°C}, \quad K_f = 1.8 \, \text{K kg mol}^{-1}, \quad m = 0.1 \, \text{m} $
Substituting the given values:
$ 0.2 = i \times 1.8 \times 0.1 $
Solving for $i$:
$ i = \frac{0.2}{1.8 \times 0.1} = \frac{20}{18} = \frac{10}{9} $
Degree of Dissociation ($\alpha$):
For the reaction $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+} + \mathrm{A}^{-}$:
$ i = 1 + \alpha $
Given $i = \frac{10}{9}$:
$ \frac{10}{9} = 1 + \alpha $
$ \alpha = \frac{1}{9} $
Dissociation Constant ($K_{eq}$):
$ \mathrm{K}_{eq} = \frac{[H^+][A^-]}{[HA]} $
At equilibrium:
$ [H^+] = [A^-] = \alpha \times C = \frac{1}{9} \times 0.1 $
$ [HA] = 0.1 \times (1 - \alpha) = 0.1 \times \left(1 - \frac{1}{9}\right) $
Substituting these into $K_{eq}$:
$ \mathrm{K}_{eq} = \frac{(0.1 \times \frac{1}{9})^2}{0.1 \times \left(1 - \frac{1}{9}\right)} $
Simplifying:
$ \mathrm{K}_{eq} = \frac{0.1 \times \left(\frac{1}{81}\right)}{0.1 \times \frac{8}{9}} = \frac{1}{720} $
Therefore:
$ \mathrm{K}_{eq} = 1.38 \times 10^{-3} $
Comments (0)
