JEE MAIN - Chemistry (2025 - 8th April Evening Shift - No. 22)
The magnitude of energy value of an electron in the first excited state of Be3+ is ________ eV (nearest integer value).
Explanation
To find the energy of an electron in the first excited state of a Be3+ ion, we can use the formula for the energy of an electron in a hydrogen-like atom:
$ \mathrm{E}_{\mathrm{T}} = -13.6 \frac{Z^2}{n^2} \text{ eV} $
Given:
Energy of the first orbit (ground state) of the hydrogen atom: $ \mathrm{E}_1 = -13.6 \text{ eV} $ (where $ Z = 1 $ and $ n = 1 $).
For Be3+:
Atomic number $ Z = 4 $.
First excited state corresponds to $ n = 2 $.
Calculation for Be3+:
The energy ratio between the hydrogen atom and the Be3+ ion can be written as:
$ \frac{\mathrm{E}_{\mathrm{H}}}{\mathrm{E}_{\mathrm{Be}^{+3}}} = \frac{Z_1^2}{n_1^2} \times \frac{n_2^2}{Z_2^2} $
Substitute the known values:
$ \frac{-13.6}{\mathrm{E}_{\mathrm{Be}^{+3}}} = \frac{1^2}{1^2} \times \frac{2^2}{4^2} $
$ \frac{-13.6}{\mathrm{E}_{\mathrm{Be}^{+3}}} = \frac{1}{1} \times \frac{4}{16} $
Solving this gives:
$ \mathrm{E}_{\mathrm{Be}^{+3}} = -13.6 \times 4 = -54.4 \text{ eV} $
The magnitude of the energy of the electron in the first excited state of Be3+ is $\left| -54.4 \right| = 54.4 \text{ eV}$, which is approximately 54 eV when rounded to the nearest integer.
Comments (0)
