JEE MAIN - Chemistry (2025 - 7th April Evening Shift - No. 21)
Explanation
Given:
Volume of $N_2$, $V = 50$ mL
Pressure, $P = 715$ mm Hg
Temperature, $T = 300$ K
Aqueous Tension at 300 K = 15 mm Hg
Calculation:
Correct the Pressure for $N_2$:
$ P_{N_2} = 715 \text{ mmHg} - 15 \text{ mmHg} = 700 \text{ mmHg} $
Convert the pressure from mm Hg to atm:
$ P_{N_2} = \frac{700}{760} \text{ atm} $
Calculate the Moles of $N_2$ using the Ideal Gas Law:
$ n_{N_2} = \frac{P_{N_2} \cdot V}{R \cdot T} $
$ n_{N_2} = \frac{\frac{700}{760} \times \frac{50}{1000}}{0.0821 \times 300} $
Calculate the Moles of $N$:
$ n_{N} = 2 \times n_{N_2} $
Calculate the Mass of $N$:
$ \text{Mass of } N = 2 \times n_{N} \times 14 $
Determine the Percentage of Nitrogen in the Organic Compound:
$ \% N = \frac{\text{Mass of } N}{\text{Mass of organic compound}} \times 100 $
$ \% N = \frac{\frac{700}{760} \times \frac{50}{1000} \times 2 \times 14}{0.0821 \times 300} \times \frac{1000}{292} \times 100 $
$ \% N = 18\% $
The percentage of nitrogen in the organic compound is 18%.
Comments (0)
