JEE MAIN - Chemistry (2025 - 2nd April Morning Shift - No. 7)
Explanation
Given:
1 mole of volatile liquid A
3 moles of volatile liquid B
Vapor pressure of pure A, $ P_A^o = 200 $ mm Hg
Vapor pressure of the solution, $ P_{S} = 500 $ mm Hg
We apply Raoult's law, which states:
$ P_{S} = P_A^o \cdot X_A + P_B^o \cdot X_B $
Where:
$ X_A $ is the mole fraction of A
$ X_B $ is the mole fraction of B
$ P_B^o $ is the vapor pressure of pure liquid B
Calculate the mole fractions:
$ X_A = \frac{1}{1+3} = \frac{1}{4} $
$ X_B = \frac{3}{1+3} = \frac{3}{4} $
Plug these into the equation:
$ 500 = 200 \times \frac{1}{4} + P_B^o \times \frac{3}{4} $
Simplifying:
$ 500 = 50 + \frac{3}{4} P_B^o $
Subtract 50 from both sides:
$ 450 = \frac{3}{4} P_B^o $
Multiply both sides by $\frac{4}{3}$ to solve for $P_B^o$:
$ P_B^o = 600 \, \text{mm Hg} $
Since $ P_A^o < P_B^o $, liquid A is the least volatile component.
In conclusion:
The vapor pressure of pure B, $ P_B^o $, is 600 mm Hg.
The least volatile component is A.
Comments (0)
