JEE MAIN - Chemistry (2025 - 2nd April Morning Shift - No. 3)
Explanation
When equal volumes of solutions are mixed, the molarity of each solution halves. To determine if a precipitate will form, calculate the ionic product $\mathrm{Q}_{\mathrm{SP}}$ using the formula:
$ \mathrm{Q}_{\mathrm{SP}} = \left[\mathrm{A}^{2+}\right]\left[\mathrm{Y}^{-}\right]^2 $
A precipitate of $\mathrm{AY}_2$ will form if $\mathrm{Q}_{\mathrm{SP}} > \mathrm{K}_{\mathrm{SP}}$, where $\mathrm{K}_{\mathrm{SP}}$ is given as $5.2 \times 10^{-7}$.
Option 1 Calculation:
$ \mathrm{Q}_{\mathrm{SP}} = \left(1.8 \times 10^{-3}\right)\left(\frac{5}{2} \times 10^{-4}\right)^2 = \text{Calculated value} < \mathrm{K}_{\mathrm{SP}} $
Option 2 Calculation:
$ \mathrm{Q}_{\mathrm{SP}} = \left(10^{-4}\right)\left(0.4 \times 10^{-3}\right)^2 = \text{Calculated value} < \mathrm{K}_{\mathrm{SP}} $
Option 3 Calculation:
$ \mathrm{Q}_{\mathrm{SP}} = \left(10^{-2}\right)\left(10^{-2}\right)^2 = \text{Calculated value} > \mathrm{K}_{\mathrm{SP}} $
Option 4 Calculation:
$ \mathrm{Q}_{\mathrm{SP}} = \left(\frac{1.5}{2} \times 10^{-4}\right)\left(\frac{1.5}{2} \times 10^{-3}\right)^2 = \text{Calculated value} < \mathrm{K}_{\mathrm{SP}} $
From the calculations, the solution in Option 3 will form a precipitate since the ionic product $\mathrm{Q}_{\mathrm{SP}}$ is greater than the solubility product $\mathrm{K}_{\mathrm{SP}}$.
Comments (0)
