JEE MAIN - Chemistry (2025 - 2nd April Morning Shift - No. 23)
Consider the following electrochemical cell at standard condition.
$$\mathrm{Au}(\mathrm{~s})\left|\mathrm{QH}_2, \mathrm{Q}\right| \mathrm{NH}_4 \mathrm{X}(0.01 \mathrm{M})| | \mathrm{Ag}^{+}(1 \mathrm{M}) \mid \mathrm{Ag}(\mathrm{~s}) \mathrm{E}_{\text {cell }}=+0.4 \mathrm{~V}$$
The couple $\mathrm{QH}_2 / \mathrm{Q}$ represents quinhydrone electrode, the half cell reaction is given below:
_2nd_April_Morning_Shift_en_23_1.png)
$$\left[\text { Given : } \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^0=+0.8 \mathrm{~V} \text { and } \frac{2.303 \mathrm{RT}}{\mathrm{~F}}=0.06 \mathrm{~V}\right]$$
The $\mathrm{pK}_{\mathrm{b}}$ value of the ammonium halide salt $\left(\mathrm{NH}_4 \mathrm{X}\right)$ used here is __________ . (nearest integer)
Explanation
The cell reaction is:
$ \mathrm{QH}_2 + 2 \mathrm{Ag}^{+} \rightarrow 2 \mathrm{Ag} + \mathrm{Q} + 2 \mathrm{H}^{+} $
The Nernst equation for the reaction can be expressed as:
$ \mathrm{E} = \mathrm{E}^{\circ} - \frac{0.06}{2} \log \left[\mathrm{H}^{+}\right]^2 $
Simplifying, we obtain:
$ \mathrm{E} = \mathrm{E}^{\circ} - 0.06 \log \left[\mathrm{H}^{+}\right] $
Given data includes:
$\mathrm{E}_{\text{cell}} = +0.4 \, \mathrm{V}$
Standard potential for $\mathrm{Ag}^{+}/\mathrm{Ag}$, $\mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^0 = +0.8 \, \mathrm{V}$
Using the cell potential and the standard potential, we calculate:
$ \mathrm{pH} = -\log \left(\mathrm{H}^{+}\right) = \frac{\mathrm{E} - \mathrm{E}^{\circ}}{0.06} = \frac{0.4 - 0.1}{0.06} $
$ \mathrm{pH} = \frac{0.3}{0.06} = 5 $
This established pH must now relate to the buffer equation involving $\mathrm{NH}_4 \mathrm{X}$, at
$ \mathrm{pH} + \mathrm{NH}_4 \mathrm{X} = 7 - \frac{1}{2} \mathrm{pK}_{\mathrm{b}} - \frac{1}{2} \log \mathrm{C} $
Given the concentration $\mathrm{C} = 0.01 \, \mathrm{M} = 10^{-2}$, we substitute into the equation:
$ 5 = 7 - \frac{1}{2} \times \mathrm{pK}_{\mathrm{b}} - \frac{1}{2} \log (10^{-2}) $
Simplifying further, the equation resolves to:
$ \mathrm{pK}_{\mathrm{b}} = 6 $
Thus, the calculated $\mathrm{pK}_{\mathrm{b}}$ value of the ammonium halide salt $\mathrm{NH}_4 \mathrm{X}$ is 6.
Comments (0)
