JEE MAIN - Chemistry (2025 - 2nd April Evening Shift - No. 24)
Explanation
Determine the conductivity from the resistivity.
The resistivity is given as
$$\rho = 870.0\; \text{m}\Omega\cdot\text{m}.$$
Convert this into ohm·meters:
$$870.0\; \text{m}\Omega\cdot\text{m} = 870.0 \times 10^{-3}\; \Omega\cdot\text{m} = 0.87\; \Omega\cdot\text{m}.$$
Conductivity is the reciprocal of resistivity:
$$\kappa = \frac{1}{\rho} = \frac{1}{0.87} \approx 1.15\; \text{S/m}.$$
Find the concentration of NaOH in mol/m³.
A $0.2\%\;(\mathrm{w}/\mathrm{v})$ solution means there are 0.2 grams of NaOH per 100 mL of solution.
In 1 liter (1000 mL) there are:
$$\frac{0.2\; \text{g}}{100\; \text{mL}} \times 1000\; \text{mL} = 2\; \text{g/L}.$$
The molar mass of NaOH is approximately $40\; \text{g/mol}$. Thus, the molarity is:
$$\text{Molarity} = \frac{2\; \text{g/L}}{40\; \text{g/mol}} = 0.05\; \text{mol/L}.$$
Since $1\; \text{L} = 0.001\; \text{m}^3$, converting to SI units (mol/m³):
$$c = 0.05\; \text{mol/L} \times \frac{1}{0.001\; \text{m}^3/\text{L}} = 50\; \text{mol/m}^3.$$
Calculate the molar conductivity in SI units.
Molar conductivity $\Lambda_m$ is given by:
$$\Lambda_m = \frac{\kappa}{c}.$$
Substituting the values:
$$\Lambda_m = \frac{1.15\; \text{S/m}}{50\; \text{mol/m}^3} = 0.023\; \text{S}\cdot \text{m}^2/\text{mol}.$$
Convert the molar conductivity to the desired units (mS dm² mol⁻¹).
First, convert the conductivity:
$$0.023\; \text{S}\cdot \text{m}^2/\text{mol} \times 1000\; \frac{\text{mS}}{\text{S}} = 23\; \text{mS}\cdot \text{m}^2/\text{mol}.$$
Now, convert the area units. Recall that:
$$1\; \text{m}^2 = 100\; \text{dm}^2.$$
So,
$$23\; \text{mS}\cdot \text{m}^2/\text{mol} = 23 \times 100\; \text{mS}\cdot \text{dm}^2/\text{mol} = 2300\; \text{mS}\cdot \text{dm}^2/\text{mol}.$$
The problem asks for the answer in the form
$$\text{[blank]} \times 10^2\; \text{mS}\cdot \text{dm}^2/\text{mol}.$$
Expressing 2300 mS dm²/mol in this form:
$$2300\; \text{mS}\cdot \text{dm}^2/\text{mol} = 23 \times 10^2\; \text{mS}\cdot \text{dm}^2/\text{mol}.$$
Thus, the molar conductivity is
$$\boxed{23 \times 10^2\; \text{mS}\cdot \text{dm}^2/\text{mol}}.$$
Comments (0)
