JEE MAIN - Chemistry (2025 - 29th January Morning Shift - No. 8)

The reaction $A_2 + B_2 \rightarrow 2AB$ follows the mechanism:

$A_2 \overset{k_1}{\underset{k_{-1}}{\rightleftharpoons}} A + A$ (fast)

$A + B_2 \xrightarrow{k_2} AB + B$ (slow)

$A + B \rightarrow AB$ (fast)

The overall order of the reaction is:

0
1
2
3

Explanation

$$\begin{aligned} &\begin{aligned} & \text { rate }=\mathrm{k}_2[\mathrm{~A}]\left[\mathrm{B}_2\right] \quad\text{.... (1)}\\ & \left(\frac{\mathrm{k}_1}{\mathrm{k}_{-1}}\right)=\left(\frac{[\mathrm{A}]^2}{\left[\mathrm{~A}_2\right]}\right) \\ & \Rightarrow[\mathrm{A}]=\sqrt{\frac{\mathrm{k}_1}{\mathrm{k}_{-1}}} \sqrt{\left[\mathrm{~A}_2\right]} \end{aligned}\\ &\text { Substituting in (1) ; we get }\\ &\begin{aligned} & \text { Rate }=\mathrm{k}_2 \sqrt{\frac{\mathrm{k}_1}{\mathrm{k}_{-1}}} \cdot\left[\mathrm{~A}_2\right]^{\frac{1}{2}} \cdot\left[\mathrm{~B}_2\right] \\ & \therefore \text { order }=\left(\frac{3}{2}\right)=1.5 \end{aligned} \end{aligned}$$

Comments (0)

Advertisement