JEE MAIN - Chemistry (2025 - 29th January Evening Shift - No. 15)

If $\quad C$ (diamond $) \rightarrow C$ (graphite) $+X \mathrm{~kJ} \mathrm{~mol}^{-1}$

C (diamond) $+\mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}_2(\mathrm{~g})+\mathrm{Y} \mathrm{kJ} \mathrm{mol}{ }^{-1}$

C (graphite) $+\mathrm{O}_2(\mathrm{~g}) \rightarrow \mathrm{CO}_2(\mathrm{~g})+\mathrm{Z} \mathrm{kJ} \mathrm{mol}^{-1}$

at constant temperature. Then

−X = Y + Z
X = Y − Z
X = −Y + Z
X = Y + Z

Explanation

Given,

$${C_{(diamond)}}\buildrel {} \over \longrightarrow {C_{(graphite)}} + X\,kJ\,mo{l^{ - 1}}$$ ............ (1)

$${C_{(diamond)}} + {O_2}(g)\buildrel {} \over \longrightarrow C{O_2}(g) + Y\,kJ\,mo{l^{ - 1}}$$ ............. (2)

$${C_{(graphite)}} + {O_2}(g)\buildrel {} \over \longrightarrow C{O_2}(g) + Z\,kJ\,mo{l^{ - 1}}$$ .............. (3)

Condition for temperature : constant

Hess's law is applied here. (Hess's law of constant heat summation)

The given reactions (2) and (3),

(2) - (3) $\Rightarrow$

$${C_{(diamond)}} + {O_2}(g) - \left( {{C_{(graphite)}} + {O_2}(g)} \right)\buildrel {} \over \longrightarrow C{O_2}(g) + Y - \left( {C{O_2}(g) + Z} \right)$$

$${C_{(diamond)}} + {O_2}(g) - {C_{(grpahite)}} - {O_2}(g)\buildrel {} \over \longrightarrow C{O_2}(g) + Y - C{O_2}(g) - Z$$

$${C_{(diamond)}} - {C_{(graphite)}} \to Y - Z$$

$${C_{(diamond)}} \to {C_{(graphite)}} + (Y - Z)$$ ............. (4)

Comparing (1) and (4),

$$X = Y - Z$$

So, the correct answer is option (2) $$X = Y - Z$$

Comments (0)

Advertisement