JEE MAIN - Chemistry (2025 - 28th January Evening Shift - No. 7)
_28th_January_Evening_Shift_en_7_1.png)
An ideal gas undergoes a cyclic transformation starting from the point A and coming back to the same point by tracing the path A→B→C→D→A as shown in the three cases above.
Choose the correct option regarding ΔU :
$\Delta \mathrm{U}(\text { Case-III })>\Delta \mathrm{U}(\text { Case-II })>\Delta \mathrm{U}(\text { Case-I })$
$\Delta \mathrm{U}($ Case-I $)>\Delta \mathrm{U}($ Case-II $)>\Delta \mathrm{U}($ Case-III $)$
$\Delta \mathrm{U}($ Case-I $)=\Delta \mathrm{U}($ Case-II $)=\Delta \mathrm{U}($ Case-III $)$
$\Delta \mathrm{U}($ Case-I $)>\Delta \mathrm{U}($ Case-III $)>\Delta \mathrm{U}($ Case-II $)$
Explanation
As internal energy ' $U$ ' is a state function, its cyclic integral must be zero in a cyclic process
$$\therefore \Delta U \text { case }(I)=\Delta U \text { case }(I I)=\Delta U \text { case }(\text { III })$$
Comments (0)
