JEE MAIN - Chemistry (2025 - 28th January Evening Shift - No. 17)
Consider an elementary reaction
$$ \mathrm{A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{~g})+\mathrm{D}(\mathrm{~g}) $$
If the volume of reaction mixture is suddenly reduced to $\frac{1}{3}$ of its initial volume, the reaction rate will become ' $x^{\prime}$ times of the original reaction rate. The value of $x$ is :
3
9
$\frac{1}{3}$
$\frac{1}{9}$
Explanation
$$\begin{aligned}
& \mathrm{R}_1=\mathrm{K}[\mathrm{~A}]^1[\mathrm{~B}]^1 \\
& \mathrm{R}_1=\mathrm{K}\left[\frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{~V}}\right]^1\left[\frac{\mathrm{n}_{\mathrm{B}}}{\mathrm{~V}}\right]^1 \\
& \mathrm{R}_2=\mathrm{K}\left[\frac{3 \mathrm{n}_{\mathrm{A}}}{\mathrm{~V}}\right]^1\left[\frac{3 \mathrm{n}_{\mathrm{B}}}{\mathrm{~V}}\right]^1 \\
& \mathrm{R}_2=9 \mathrm{R}_1
\end{aligned}$$
Comments (0)
