Given below are two statements :
Statement (I) : The boiling points of alcohols and phenols increase with increase in the number of C -atoms.
Statement (II) : The boiling points of alcohols and phenols are higher in comparison to other class of compounds such as ethers, haloalkanes.
In the light of the above statements, choose the correct answer from the options given below :
The effect of temperature on spontaneity of reactions are represented as :
$\Delta$H | $\Delta$S | Temperature | Spontaneity | |
---|---|---|---|---|
(A) | $+$ | $-$ | any T | Non spontaneous |
(B) | $+$ | $+$ | low T | spontaneous |
(C) | $-$ | $-$ | low T | Non spontaneous |
(D) | $-$ | $+$ | any T | spontaneous |
The incorrect combinations are :
Match List - I with List - II
List - I (Isomers of $\mathrm{C}_{10} \mathrm{H}_{14}$ ) |
List - II (Ozonolysis product) |
||
---|---|---|---|
(A) | ![]() |
(I) | ![]() |
(B) | ![]() |
(II) | ![]() |
(C) | ![]() |
(III) | ![]() |
(D) | ![]() |
(IV) | ![]() |
Choose the correct answer from the options given below :
Identify the coordination complexes in which the central metal ion has $\mathrm{d}^4$ configuration.
(A) $\left[\mathrm{FeO}_4\right]^{2-}$
(B) $\quad\left[\mathrm{Mn}(\mathrm{CN})_6\right]^{3-}$
(C) $\left[\mathrm{Fe}(\mathrm{CN})_6\right]^{3-}$
(D)
(E) $\left[\mathrm{NiF}_6\right]^{2-}$
Choose the correct answer from the options given below :
Standard electrode potentials for a few half cells are mentioned below :
$$\begin{aligned} & \mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\circ}=0.34 \mathrm{~V}, \mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{\circ}=-0.76 \mathrm{~V} \\ & \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\circ}=0.80 \mathrm{~V}, \mathrm{E}_{\mathrm{Mg}^{2+} / \mathrm{Mg}}^{\circ}=-2.37 \mathrm{~V} \end{aligned}$$
Which one of the following cells gives the most negative value of $\Delta \mathrm{G}^{\circ}$ ?
Consider the reaction
$$\mathrm{X}_2 \mathrm{Y}(\mathrm{~g}) \rightleftharpoons \mathrm{X}_2(\mathrm{~g})+\frac{1}{2} \mathrm{Y}_2(\mathrm{~g})$$
The equation representing correct relationship between the degree of dissociation (x) of $\mathrm{X}_2 \mathrm{Y}(\mathrm{g})$ with its equilibrium constant Kp is __________.
Assume $x$ to be very very small.
Given below are two statements :
Statement (I) : For a given shell, the total number of allowed orbitals is given by $n^2$.
Statement (II) : For any subshell, the spatial orientation of the orbitals is given by $-l$ to $+l$ values including zero.
In the light of the above statements, choose the correct answer from the options given below :
Given below are two statements about X-ray spectra of elements :
Statement (I) : A plot of $\sqrt{v}$ ( $v=$ frequency of X-rays emitted) vs atomic mass is a straight line.
Statement (II) : A plot of $v(\nu=$ frequency of $X$-rays emitted) vs atomic number is a straight line. In the light of the above statements, choose the correct answer from the options given below :
Consider the following reactions
$$\mathrm{K}_2 \mathrm{Cr}_2 \mathrm{O}_7 \xrightarrow[-\mathrm{H}_2 \mathrm{O}]{\mathrm{KOH}}[\mathrm{~A}] \xrightarrow[-\mathrm{H}_2 \mathrm{O}]{\mathrm{H}_2 \mathrm{SO}_4}[\mathrm{~B}]+\mathrm{K}_2 \mathrm{SO}_4$$
The products $[A]$ and $[B]$, respectively are :
Given below are two statements:
Consider the following reaction
Statement (I): In the case of formaldehyde is about 2280, due to small substituents, hydration is faster.
Statement (II) : In the case of trichloro acetaldehyde is about 2000 due to $-$I effect of $-$Cl .
In the light of the above statements, choose the correct answer from the options given below :
The bond dissociation enthalpy of $\mathrm{X}_2 \Delta \mathrm{H}_{\text {bond }}^{\circ}$ calculated from the given data is ___________ $\mathrm{kJ} \mathrm{mol}^{-1}$. (Nearest integer)
$$\begin{aligned} & \mathrm{M}^{+} \mathrm{X}^{-}(\mathrm{s}) \rightarrow \mathrm{M}^{+}(\mathrm{g})+\mathrm{X}^{-}(\mathrm{g}) \Delta \mathrm{H}_{\text {lattice }}^{\circ}=800 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \mathrm{M}(\mathrm{~s}) \rightarrow \mathrm{M}(\mathrm{~g}) \Delta \mathrm{H}_{\text {sub }}^{\circ}=100 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$$
$$\mathrm{M}(\mathrm{~g}) \rightarrow \mathrm{M}^{+}(\mathrm{g})+\mathrm{e}^{-}(\mathrm{g}) \Delta \mathrm{H}_{\mathrm{i}}^{\circ}=500 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
$$\mathrm{X}(\mathrm{~g})+\mathrm{e}^{-}(\mathrm{g}) \rightarrow \mathrm{X}^{-}(\mathrm{g}) \Delta \mathrm{H}_{\mathrm{eg}}^{\circ}=-300 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
$$\mathrm{M}(\mathrm{~s})+\frac{1}{2} \mathrm{X}_2(\mathrm{~g}) \rightarrow \mathrm{M}^{+} \mathrm{X}^{-}(\mathrm{s}) \Delta \mathrm{H}_f^{\circ}=-400 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
[Given : $\mathrm{M}^{+} \mathrm{X}^{-}$is a pure ionic compound and X forms a diatomic molecule $\mathrm{X}_2$ in gaseous state]