JEE MAIN - Chemistry (2025 - 22nd January Morning Shift - No. 16)
Arrange the following solutions in order of their increasing boiling points.
(i) $10^{-4} \mathrm{M} \mathrm{NaCl}$
(ii) $10^{-4} \mathrm{M}$ Urea
(iii) $10^{-3} \mathrm{M} \mathrm{NaCl}$
(iv) $10^{-2} \mathrm{M} \mathrm{NaCl}$
Explanation
Step 1: Identify the van’t Hoff factor ($i$) for each solute
NaCl dissociates (ideally) into two ions:
$ \mathrm{NaCl} \;\rightarrow\; \mathrm{Na^+} + \mathrm{Cl^-}, $
so $i \approx 2.$
Urea ($\mathrm{CH_4N_2O}$) is a non‐electrolyte (does not dissociate), so $i = 1.$
Step 2: Effective molar concentration of particles
The total particle concentration for each solution is approximately $(i \times \text{molarity})$.
(i) $10^{-4}\,M$ NaCl
$ \text{Effective concentration} \;=\; 2 \times 10^{-4} = 2 \times 10^{-4}. $
(ii) $10^{-4}\,M$ Urea
$ \text{Effective concentration} \;=\; 1 \times 10^{-4} = 1 \times 10^{-4}. $
(iii) $10^{-3}\,M$ NaCl
$ \text{Effective concentration} \;=\; 2 \times 10^{-3} = 2 \times 10^{-3}. $
(iv) $10^{-2}\,M$ NaCl
$ \text{Effective concentration} \;=\; 2 \times 10^{-2} = 2 \times 10^{-2}. $
Step 3: Compare to rank the boiling points
A larger total particle concentration (and hence larger colligative effect) corresponds to a higher boiling point. Arrange from lowest to highest:
Lowest: $10^{-4}\,M$ Urea $\bigl[1 \times 10^{-4}\bigr]$
Next: $10^{-4}\,M$ NaCl $\bigl[2 \times 10^{-4}\bigr]$
Next: $10^{-3}\,M$ NaCl $\bigl[2 \times 10^{-3}\bigr]$
Highest: $10^{-2}\,M$ NaCl $\bigl[2 \times 10^{-2}\bigr]$
Hence, in the format $(\text{ii}) < (\text{i}) < (\text{iii}) < (\text{iv})$.
Final Answer
$ \boxed{\text{(ii) } < \text{(i) } < \text{(iii) } < \text{(iv)}} \quad \text{(Option B)} $
Comments (0)
