JEE MAIN - Chemistry (2025 - 22nd January Evening Shift - No. 24)
Explanation
To determine the final concentration of the NaOH solution, we use the formula for mixing solutions :
$ M_F = \frac{M_1 \times V_1 + M_2 \times V_2}{V_1 + V_2} $
Where :
$ M_1 = 2 \, \text{M} $ and $ V_1 = 20 \, \text{mL} $: Concentration and volume of the first solution.
$ M_2 = 0.5 \, \text{M} $ and $ V_2 = 400 \, \text{mL} $: Concentration and volume of the second solution.
Substitute the values into the equation:
$ M_F = \frac{2 \times 20 + 0.5 \times 400}{420} $
Calculating each term:
$ 2 \times 20 = 40 $
$ 0.5 \times 400 = 200 $
Add these results:
$ M_F = \frac{40 + 200}{420} = \frac{240}{420} \approx 0.571 \, \text{M} $
Convert this to scientific notation as the problem specifies the answer should be in $ \times 10^{-2} $ form:
$ M_F = 57.1 \times 10^{-2} \, \text{M} $
Rounded to the nearest integer, the final concentration is:
$ 57 $
Comments (0)
