JEE MAIN - Chemistry (2025 - 22nd January Evening Shift - No. 12)
Match List - I with List - II.
List - I (Partial Derivatives) |
List - II (Thermodynamic Quantity) |
||
---|---|---|---|
(A) | $\left(\frac{\partial \mathrm{G}}{\partial \mathrm{T}}\right)_{\mathrm{P}}$ | (I) | Cp |
(B) | $\left(\frac{\partial \mathrm{H}}{\partial \mathrm{T}}\right)_{\mathrm{P}}$ | (II) | $-$S |
(C) | $\left(\frac{\partial \mathrm{G}}{\partial \mathrm{P}}\right)_{\mathrm{T}}$ | (III) | Cv |
(D) | $\left(\frac{\partial \mathrm{U}}{\partial \mathrm{T}}\right)_{\mathrm{V}}$ | (IV) | V |
Choose the correct answer from the options given below :
Explanation
We want to match each partial derivative in List–I to the appropriate thermodynamic quantity in List–II:
1. $\displaystyle\left(\frac{\partial G}{\partial T}\right)_{P}$
A well-known thermodynamic identity is:
$ \left(\frac{\partial G}{\partial T}\right)_{P} \;=\; -S. $
Hence,
$ (A) \quad \longrightarrow \quad -S \quad (\text{II}). $
2. $\displaystyle\left(\frac{\partial H}{\partial T}\right)_{P}$
By definition of the heat capacity at constant pressure,
$ \left(\frac{\partial H}{\partial T}\right)_{P} \;=\; C_P. $
Hence,
$ (B) \quad \longrightarrow \quad C_P \quad (\text{I}). $
3. $\displaystyle\left(\frac{\partial G}{\partial P}\right)_{T}$
A standard thermodynamic relation (for a single‐component system) is:
$ \left(\frac{\partial G}{\partial P}\right)_{T} \;=\; V. $
Hence,
$ (C) \quad \longrightarrow \quad V \quad (\text{IV}). $
4. $\displaystyle\left(\frac{\partial U}{\partial T}\right)_{V}$
By definition of the heat capacity at constant volume,
$ \left(\frac{\partial U}{\partial T}\right)_{V} \;=\; C_V. $
Hence,
$ (D) \quad \longrightarrow \quad C_V \quad (\text{III}). $
Final Matching
$ (A) \to \text{(II)}, \quad (B) \to \text{(I)}, \quad (C) \to \text{(IV)}, \quad (D) \to \text{(III)}. $
Which corresponds to:
Option C: (A)-(II), (B)-(I), (C)-(IV), (D)-(III).
Comments (0)
