JEE MAIN - Chemistry (2024 - 9th April Evening Shift - No. 21)
Based on Heisenberg's uncertainty principle, the uncertainty in the velocity of the electron to be found within an atomic nucleus of diameter $$10^{-15} \mathrm{~m}$$ is ________ $$\times 10^9 \mathrm{~ms}^{-1}$$ (nearest integer)
[Given : mass of electron $$=9.1 \times 10^{-31} \mathrm{~kg}$$, Plank's constant $$(h)=6.626 \times 10^{-34} \mathrm{Js}$$] (Value of $$\pi=3.14$$)
Explanation
To find the uncertainty in the velocity of the electron within an atomic nucleus of diameter $10^{-15} \ \text{m}$, we can use Heisenberg's uncertainty principle. The principle is expressed as:
$ \Delta x \cdot m \Delta v \geq \frac{h}{4 \pi} $
Here, $\Delta x$ is the uncertainty in position, $m$ is the mass of the electron, $\Delta v$ is the uncertainty in velocity, and $h$ is Planck's constant.
Given:
- $ \Delta x = 10^{-15} \ \text{m} $
- $ m = 9.1 \times 10^{-31} \ \text{kg} $
- $ h = 6.626 \times 10^{-34} \ \text{Js} $
- $ \pi = 3.14 $
We need to find $\Delta v$. Rearrange the uncertainty principle to solve for $\Delta v$:
$ \Delta v \approx \frac{h}{4 \pi m \Delta x} $
Plug in the numbers:
$ \Delta v = \frac{6.626 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31} \times 10^{-15}} $
First, calculate the denominator:
$ 4 \times 3.14 \times 9.1 \times 10^{-31} \times 10^{-15} = 114.392 \times 10^{-46} $
Now, perform the division:
$ \Delta v = \frac{6.626 \times 10^{-34}}{114.392 \times 10^{-46}} = \frac{6.626}{114.392} \times 10^{12} $
Perform the division:
$ \Delta v \approx 0.0579 \times 10^{12} \ \text{m/s} = 57.97 \times 10^9 \ \text{m/s} $
So, the uncertainty in the velocity of the electron is:
$ 58 \times 10^{9} \ \text{m/s} \quad \text{(nearest integer)} $
Comments (0)
