JEE MAIN - Chemistry (2024 - 8th April Evening Shift - No. 11)

For a reaction $$A \xrightarrow{\mathrm{K}_1} \mathrm{~B} \xrightarrow{\mathrm{K}_2} \mathrm{C}$$ If the rate of formation of B is set to be zero then the concentration of B is given by :
$$(\mathrm{K}_1-\mathrm{K}_2)[\mathrm{A}]$$
$$(\mathrm{K}_1+\mathrm{K}_2)[\mathrm{A}]$$
$$\mathrm{K}_1 \mathrm{K}_2[\mathrm{~A}]$$
$$(\mathrm{K}_1 / \mathrm{K}_2)[\mathrm{A}]$$

Explanation

To determine the concentration of $ \mathrm{B} $ when the rate of formation of $ \mathrm{B} $ is set to zero, let's consider the reaction sequence:

$$ \mathrm{A} \xrightarrow{\mathrm{K}_1} \mathrm{B} \xrightarrow{\mathrm{K}_2} \mathrm{C} $$

The rate of formation of $ \mathrm{B} $ from $ \mathrm{A} $ is given by:

$$ \text{Rate of formation of } \mathrm{B} = \mathrm{K}_1[\mathrm{A}] $$

The rate of consumption of $ \mathrm{B} $ to form $ \mathrm{C} $ is given by:

$$ \text{Rate of consumption of } \mathrm{B} = \mathrm{K}_2[\mathrm{B}] $$

At steady state, where the rate of formation of $ \mathrm{B} $ is set to zero, the rate of formation of $ \mathrm{B} $ is equal to the rate of its consumption. Therefore, we have:

$$ \mathrm{K}_1[\mathrm{A}] = \mathrm{K}_2[\mathrm{B}] $$

Solving for $ [\mathrm{B}] $, we get:

$$ [\mathrm{B}] = \frac{\mathrm{K}_1}{\mathrm{K}_2} [\mathrm{A}] $$

Therefore, the correct concentration of $ \mathrm{B} $ is:

Option D: $$ \left(\frac{\mathrm{K}_1}{\mathrm{K}_2}\right)[\mathrm{A}] $$

Comments (0)

Advertisement