JEE MAIN - Chemistry (2024 - 4th April Morning Shift - No. 21)

$$2.5 \mathrm{~g}$$ of a non-volatile, non-electrolyte is dissolved in $$100 \mathrm{~g}$$ of water at $$25^{\circ} \mathrm{C}$$. The solution showed a boiling point elevation by $$2^{\circ} \mathrm{C}$$. Assuming the solute concentration is negligible with respect to the solvent concentration, the vapor pressure of the resulting aqueous solution is _________ $$\mathrm{mm}$$ of $$\mathrm{Hg}$$ (nearest integer)

[Given : Molal boiling point elevation constant of water $\left(\mathrm{K}_{\mathrm{b}}\right)=0.52 \mathrm{~K} . \mathrm{kg} \mathrm{mol}^{-1}$, $$1 \mathrm{~atm}$$ pressure $$=760 \mathrm{~mm}$$ of $$\mathrm{Hg}$$, molar mass of water $$=18 \mathrm{~g} \mathrm{~mol}^{-1}]$$

Answer
707

Explanation

  • Molal boiling point elevation constant of water ($K_b$) = 0.52 K.kg.mol-1
  • 1 atm = 760 mm Hg
  • Molar mass of water = 18 g.mol-1

First, we calculate the molality (m) of the solution using the boiling point elevation formula:

$$ \Delta T_b = K_b \times m $$

From the problem, we know:

$$ 2 = 0.52 \times m $$

Solving for m:

$$ m = \frac{2}{0.52} \approx 3.846 \text{ mol/kg} $$

Next, considering the solution is highly diluted, we use the formula for relative lowering of vapor pressure:

$$ \frac{\Delta P}{P^0} = \frac{n_{\text{solute}}}{n_{\text{solvent}}} $$

Given that molality (m) is defined as the number of moles of solute per kilogram of solvent:

$$ \frac{\Delta P}{P^0} = \frac{m}{1000} \times M_{solvent} $$

Substitute the known values:

$$ \Delta P = P^0 \times \frac{m}{1000} \times M_{solvent} $$

$$ = 760 \times \frac{3.846}{1000} \times 18 $$

$$ = 52.615 \text{ mm Hg} $$

Therefore, the vapor pressure of the solution:

$$ P_{solution} = P^0 - \Delta P $$

$$ = 760 - 52.615 $$

$$ \approx 707.385 \text{ mm Hg} $$

Rounding to the nearest integer, the vapor pressure of the aqueous solution is 707 mm Hg.

Comments (0)

Advertisement