JEE MAIN - Chemistry (2024 - 29th January Morning Shift - No. 24)
For the reaction $$\mathrm{N}_2 \mathrm{O}_{4(\mathrm{~g})} \rightleftarrows 2 \mathrm{NO}_{2(\mathrm{~g})}, \mathrm{K}_{\mathrm{p}}=0.492 \mathrm{~atm}$$ at $$300 \mathrm{~K} . \mathrm{K}_{\mathrm{c}}$$ for the reaction at same temperature is _________ $$\times 10^{-2}$$.
(Given : $$\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$$)
Explanation
For the reaction:
$$ \mathrm{N}_2 \mathrm{O}_{4(\mathrm{~g})} \rightleftarrows 2 \mathrm{NO}_{2(\mathrm{~g})} $$
we need to find the equilibrium constant $$\mathrm{K}_{\mathrm{c}}$$ at 300 K given that $$\mathrm{K}_{\mathrm{p}} = 0.492 \text{ atm}$$.
The relationship between $$\mathrm{K}_{\mathrm{p}}$$ and $$\mathrm{K}_{\mathrm{c}}$$ is given by the following equation:
$$ \mathrm{K}_{\mathrm{p}} = \mathrm{K}_{\mathrm{c}} (RT)^{\Delta n} $$
where:
$$R = 0.082 \, \mathrm{L} \, \mathrm{atm} \, \mathrm{mol}^{-1} \, \mathrm{K}^{-1}$$ is the gas constant,
$$T = 300 \, \mathrm{K}$$ is the temperature,
$$\Delta n$$ is the change in moles of gas from reactants to products.
For the reaction given:
The number of moles of gaseous products is 2 (for $$2 \mathrm{NO}_2$$).
The number of moles of gaseous reactants is 1 (for $$\mathrm{N}_2 \mathrm{O}_4$$).
Thus, $$\Delta n = 2 - 1 = 1$$.
Substitute the known values into the equation:
$$ 0.492 = \mathrm{K}_{\mathrm{c}} (0.082 \times 300)^{1} $$
Solve for $$\mathrm{K}_{\mathrm{c}}$$:
$$ 0.492 = \mathrm{K}_{\mathrm{c}} \times 24.6 $$
$$ \mathrm{K}_{\mathrm{c}} = \frac{0.492}{24.6} $$
Calculate $$\mathrm{K}_{\mathrm{c}}$$:
$$ \mathrm{K}_{\mathrm{c}} = 0.02 $$
Thus, $$\mathrm{K}_{\mathrm{c}}$$ for the reaction at 300 K is:
$$ 2 \times 10^{-2} $$
Comments (0)
