JEE MAIN - Chemistry (2023 - 6th April Morning Shift - No. 19)

The value of $$\log \mathrm{K}$$ for the reaction $$\mathrm{A} \rightleftharpoons \mathrm{B}$$ at $$298 \mathrm{~K}$$ is ___________. (Nearest integer)

Given: $$\Delta \mathrm{H}^{\circ}=-54.07 \mathrm{~kJ} \mathrm{~mol}^{-1}$$

$$\Delta \mathrm{S}^{\circ}=10 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$$

(Take $$2.303 \times 8.314 \times 298=5705$$ )

Answer
10

Explanation

Given:

$$ \begin{align} \Delta H^0 & = -54.07 \, \text{kJ/mol} = -54070 \, \text{J/mol} \\\\ \Delta S^0 & = 10 \, \text{J/K}\cdot \text{mol} \\\\ T & = 298 \, \text{K} \end{align} $$

We find the change in Gibbs free energy $\Delta G^0$:

$$ \begin{align} \Delta G^0 & = \Delta H^0 - T \Delta S^0 \\\\ & = -54070 - (10 \times 298) \\\\ & = -54070 - 2980 \\\\ & = -57050 \, \text{J/mol} \end{align} $$

Now, we'll use the given expression with the correct constant for $ R $ as 8.314 J/(mol·K):

$$ \begin{align} \Delta G^0 & = -2.303 \times 8.314 \times 298 \times \log K \\\\ \log K & = \frac{-57050}{2.303 \times 8.314 \times 298} \\\\ & \approx 10 \end{align} $$

So, the answer is $\log K = 10$.

Comments (0)

Advertisement