JEE MAIN - Chemistry (2023 - 6th April Morning Shift - No. 18)

Mass of Urea $$\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$$ required to be dissolved in $$1000 \mathrm{~g}$$ of water in order to reduce the vapour pressure of water by $$25 \%$$ is _________ g. (Nearest integer)

Given: Molar mass of N, C, O and H are $$14,12,16$$ and $$1 \mathrm{~g} \mathrm{~mol}^{-1}$$ respectively

Answer
1111

Explanation

Given:

  • Vapor pressure reduction: $25\%$ ($$0.75$$ times the vapor pressure of pure water)

  • Molar mass of water ($$\text{H}_2\text{O}$$): $$18 \, \text{g/mol}$$

  • Mass of solvent (water): $$1000 \, \text{g}$$

Using Raoult's law:

$$\frac{P^0 - P_s}{P_s} = \frac{n_{\text{solute}}}{n_{\text{solvent}}} = \frac{\frac{x}{M_{\text{urea}}}}{\frac{1000}{M_{\text{water}}}} = \frac{P^0 - 0.75P^0}{0.75P^0}$$

Solving for (x):

$$\frac{x}{60} = \frac{10000}{9}$$ $$x = 1111.11111 \approx 1111 \, \text{g}$$

So, the mass of urea required to be dissolved in $$1000 \, \text{g}$$ of water is $$1111 \, \text{g}$$.

Comments (0)

Advertisement