JEE MAIN - Chemistry (2023 - 29th January Morning Shift - No. 19)
Consider the following reaction approaching equilibrium at 27$$^\circ$$C and 1 atm pressure
$$\mathrm{A+B}$$ $$\mathrel{\mathop{\kern0pt\rightleftharpoons} \limits_{{k_r} = {{10}^2}}^{{k_f} = {{10}^3}}} $$ $$\mathrm{C+D}$$
The standard Gibb's energy change $$\mathrm{(\Delta_r G^\theta)}$$ at 27$$^\circ$$C is ($$-$$) ___________ kJ mol$$^{-1}$$ (Nearest integer).
(Given : $$\mathrm{R=8.3~J~K^{-1}~mol^{-1}}$$ and $$\mathrm{\ln 10=2.3}$$)
Explanation
The Gibbs energy change for a reaction at standard conditions, $\Delta_r G^\theta$, can be calculated using the equation:
$ \Delta \mathrm{G}^\theta = -\mathrm{RT} \ln \mathrm{K}_{\mathrm{eq}} $
Where $\mathrm{K}_{\mathrm{eq}}$ is the equilibrium constant given by $\frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{K}_{\mathrm{b}}}$. For the reaction:
$ \mathrm{A + B} \rightleftharpoons \mathrm{C + D} $
The forward rate constant, $k_f$, is $10^3$, and the reverse rate constant, $k_r$, is $10^2$. Therefore,
$ \mathrm{K}_{\mathrm{eq}} = \frac{10^3}{10^2} = 10 $
Substitute the values into the Gibbs energy change formula:
$ \Delta \mathrm{G}^\theta = -\mathrm{RT} \ln 10 $
where $R = 8.3 \, \mathrm{J \, K^{-1} \, mol^{-1}}$ and $T = 300 \, \mathrm{K}$ (since the temperature is $27^\circ \mathrm{C}$ which converts to 300 K). The natural logarithm of 10 is approximately 2.3.
$ \Delta \mathrm{G}^\theta = -(8.3 \times 300 \times 2.3) $
Calculating gives:
$ \Delta \mathrm{G}^\theta = -5711 \, \mathrm{J \, mol^{-1}} $
Converting to kJ:
$ \Delta \mathrm{G}^\theta = -5.7 \, \mathrm{kJ \, mol^{-1}} $
Rounding to the nearest integer, the standard Gibb's energy change is approximately $-6 \, \mathrm{kJ \, mol^{-1}}$.
Comments (0)
