JEE MAIN - Chemistry (2023 - 25th January Evening Shift - No. 4)
What is the mass ratio of ethylene glycol ($$\mathrm{C_2H_6O_2}$$, molar mass = 62 g/mol) required for making 500 g of 0.25 molal aqueous solution and 250 mL of 0.25 molar aqueous solution?
1 : 2
1 : 1
2 : 1
3 : 1
Explanation
For 500 g of 0.25 molal aqueous solution,
0.25 = $${{{{{w_1}} \over {62}}} \over {{{500} \over {1000}}}}$$ = $${{2{w_2}} \over {62}}$$ ......(1)
For 250 mL of 0.25 molar aqueous solution
$${{{{{w_2}} \over {62}}} \over {{{250} \over {1000}}}} = {{4{w_2}} \over {62}}$$ .......(2)
Dividing equation (1) by (2), we get
$${{0.25} \over {0.25}} = {{{{2{w_1}} \over {62}}} \over {{{4{w_2}} \over {62}}}}$$
$$ \Rightarrow {{2{w_1}} \over {62}} = {{4{w_2}} \over {62}}$$
$$ \Rightarrow {{{w_1}} \over {{w_2}}} = {4 \over 2} = {2 \over 1}$$
Note :
0.25 = $${{{{{w_1}} \over {62}}} \over {{{500} \over {1000}}}}$$ = $${{2{w_2}} \over {62}}$$ ......(1)
For 250 mL of 0.25 molar aqueous solution
$${{{{{w_2}} \over {62}}} \over {{{250} \over {1000}}}} = {{4{w_2}} \over {62}}$$ .......(2)
Dividing equation (1) by (2), we get
$${{0.25} \over {0.25}} = {{{{2{w_1}} \over {62}}} \over {{{4{w_2}} \over {62}}}}$$
$$ \Rightarrow {{2{w_1}} \over {62}} = {{4{w_2}} \over {62}}$$
$$ \Rightarrow {{{w_1}} \over {{w_2}}} = {4 \over 2} = {2 \over 1}$$
Note :
(1) Molality of solution is defined as number of moles of solute present per kg of solvent.
$$m = {{no.\,of\,moles\,(solute)} \over {weight(in\,kg) of solvent}}$$
(2) Molarity of solution is defined as number of moles of solute present per litre of solution.
$$M = {{no.\,of\,moles\,(solute)} \over {v(in\,litre\,of\,solution)}}$$
Comments (0)
