JEE MAIN - Chemistry (2023 - 13th April Morning Shift - No. 22)

$$25.0 \mathrm{~mL}$$ of $$0.050 ~\mathrm{M} ~\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$$ is mixed with $$25.0 \mathrm{~mL}$$ of $$0.020 ~\mathrm{M} ~\mathrm{NaF} . \mathrm{K}_{\mathrm{Sp}}$$ of $$\mathrm{BaF}_{2}$$ is $$0.5 \times 10^{-6}$$ at $$298 \mathrm{~K}$$. The ratio of $$\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}$$ and $$\mathrm{K}_{\mathrm{sp}}$$ is ___________.

(Nearest integer)

Answer
5

Explanation

Initial concentrations before mixing:

$$[\mathrm{Ba(NO_3)_2}] = 0.050\, \mathrm{M}$$

$$[\mathrm{NaF}] = 0.020\, \mathrm{M}$$

Volumes of the solutions:

$$V_{\mathrm{Ba(NO_3)_2}} = V_{\mathrm{NaF}} = 25.0\, \mathrm{mL}$$

After mixing, the total volume becomes:

$$V_{\mathrm{total}} = 25.0\, \mathrm{mL} + 25.0\, \mathrm{mL} = 50.0\, \mathrm{mL}$$

Now, we calculate the initial concentrations after mixing:

$$[\mathrm{Ba}^{2+}] = \frac{25.0\, \mathrm{mL} \times 0.050\, \mathrm{M}}{50.0\, \mathrm{mL}} = 0.025\, \mathrm{M}$$

$$[\mathrm{F}^{-}] = \frac{25.0\, \mathrm{mL} \times 0.020\, \mathrm{M}}{50.0\, \mathrm{mL}} = 0.010\, \mathrm{M}$$

Next, we calculate the reaction quotient (Q) for the precipitation of BaF₂:

$$Q = [\mathrm{Ba}^{2+}][\mathrm{F}^{-}]^2$$

$$Q = (0.025\, \mathrm{M})(0.010\, \mathrm{M})^2 = 2.5 \times 10^{-6}$$

Ksp of BaF₂ is given as $$5 \times 10^{-7}$$.

Now, we find the ratio of $$[\mathrm{Ba}^{2+}][\mathrm{F}^{-}]^2$$ to Ksp:

$$\text{Ratio} = \frac{(2.5 \times 10^{-6})}{(5 \times 10^{-7})} = 5$$

So, the correct ratio of $$[\mathrm{Ba}^{2+}][\mathrm{F}^{-}]^2$$ to Ksp is 5.

Comments (0)

Advertisement