JEE MAIN - Chemistry (2023 - 13th April Morning Shift - No. 21)
$$\mathrm{A}_{2}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB} . \Delta H_{f}^{0}=-200 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
$$\mathrm{AB}, \mathrm{A}_{2}$$ and $$\mathrm{B}_{2}$$ are diatomic molecules. If the bond enthalpies of $$\mathrm{A}_{2}, \mathrm{~B}_{2}$$ and $$\mathrm{AB}$$ are in the ratio $$1: 0.5: 1$$, then the bond enthalpy of $$\mathrm{A}_{2}$$ is ____________ $$\mathrm{kJ} ~\mathrm{mol}^{-1}$$ (Nearest integer)
Answer
400
Explanation
To find the bond enthalpy of $$\mathrm{A}_{2}$$, we can use the given information about the reaction and the bond enthalpies' ratio. The reaction is:
$$\mathrm{A}_{2}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB}$$
The enthalpy change for the reaction, $$\Delta H_{f}^{0}$$, is given as:
$$\Delta H_{f}^{0} = -200 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
The bond enthalpies of $$\mathrm{A}_{2}$$, $$\mathrm{B}_{2}$$, and $$\mathrm{AB}$$ are in the ratio of $$1: 0.5: 1$$.
Let's denote the bond enthalpies of $$\mathrm{A}_{2}$$, $$\mathrm{B}_{2}$$, and $$\mathrm{AB}$$ as $$x$$, $$0.5x$$, and $$x$$, respectively.
The enthalpy change for the reaction can be calculated using the bond enthalpies:
$$\Delta H_{f}^{0} = \text{(Sum of bond enthalpies of reactants)} - \text{(Sum of bond enthalpies of products)}$$
For the given reaction:
$$-200 = (x + 0.5x) - 2x$$
Now we can solve for $$x$$, which represents the bond enthalpy of $$\mathrm{A}_{2}$$:
$$-200 = 1.5x - 2x$$
$$-200 = -0.5x$$
$$x = \frac{-200}{-0.5}$$
$$x = 400$$
The bond enthalpy of $$\mathrm{A}_{2}$$ is $$400 ~\mathrm{kJ} ~\mathrm{mol}^{-1}$$.
$$\mathrm{A}_{2}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB}$$
The enthalpy change for the reaction, $$\Delta H_{f}^{0}$$, is given as:
$$\Delta H_{f}^{0} = -200 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
The bond enthalpies of $$\mathrm{A}_{2}$$, $$\mathrm{B}_{2}$$, and $$\mathrm{AB}$$ are in the ratio of $$1: 0.5: 1$$.
Let's denote the bond enthalpies of $$\mathrm{A}_{2}$$, $$\mathrm{B}_{2}$$, and $$\mathrm{AB}$$ as $$x$$, $$0.5x$$, and $$x$$, respectively.
The enthalpy change for the reaction can be calculated using the bond enthalpies:
$$\Delta H_{f}^{0} = \text{(Sum of bond enthalpies of reactants)} - \text{(Sum of bond enthalpies of products)}$$
For the given reaction:
$$-200 = (x + 0.5x) - 2x$$
Now we can solve for $$x$$, which represents the bond enthalpy of $$\mathrm{A}_{2}$$:
$$-200 = 1.5x - 2x$$
$$-200 = -0.5x$$
$$x = \frac{-200}{-0.5}$$
$$x = 400$$
The bond enthalpy of $$\mathrm{A}_{2}$$ is $$400 ~\mathrm{kJ} ~\mathrm{mol}^{-1}$$.
Comments (0)
