JEE MAIN - Chemistry (2023 - 13th April Evening Shift - No. 19)
At $$298 \mathrm{~K}$$, the standard reduction potential for $$\mathrm{Cu}^{2+} / \mathrm{Cu}$$ electrode is $$0.34 \mathrm{~V}$$.
Given : $$\mathrm{K}_{\mathrm{sp}} \mathrm{Cu}(\mathrm{OH})_{2}=1 \times 10^{-20}$$
Take $$\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.059 \mathrm{~V}$$
The reduction potential at $$\mathrm{pH}=14$$ for the above couple is $$(-) x \times 10^{-2} \mathrm{~V}$$. The value of $$x$$ is ___________
Answer
25
Explanation
Given:
Standard reduction potential for Cu²⁺/Cu, E° = 0.34 V
Ksp of Cu(OH)₂ = 1 × 10⁻²⁰
2.303RT/F = 0.059 V
pH = 14
First, we have the solubility equilibrium for Cu(OH)₂:
$$\mathrm{Cu}(\mathrm{OH})_2(\mathrm{~s}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$$
The Ksp expression for this reaction is:
$$\mathrm{Ksp}=\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{OH}^{-}\right]^2$$
At pH 14, the concentration of OH⁻ ions is 1 M:
$$\left[\mathrm{OH}^{-}\right] = 1 \mathrm{M}$$
Now we can find the concentration of Cu²⁺:
$$\left[\mathrm{Cu}^{2+}\right]=\frac{\mathrm{Ksp}}{\left[\mathrm{OH}^{-}\right]^2}=\frac{1 \times 10^{-20}}{1^2}=10^{-20} \mathrm{M}$$
The half-cell reaction for the reduction of Cu²⁺ is:
$$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$$
Now we can use the Nernst equation to calculate the reduction potential at pH 14:
$$E = E° - \frac{0.059}{n} \log_{10} \frac{1}{\left[\mathrm{Cu}^{2+}\right]}$$
Here, n = 2 (number of electrons transferred in the Cu²⁺/Cu couple).
$$E = 0.34 - \frac{0.059}{2} \log_{10} \frac{1}{10^{-20}}$$
$$E = 0.34 - \frac{0.059}{2} \times 20$$
$$E = 0.34 - 0.59$$
$$E = -0.25 \mathrm{~V}$$
Thus, the reduction potential at pH 14 for the Cu²⁺/Cu couple is -0.25 V. In terms of x × 10⁻² V:
$$(-) x \times 10^{-2} \mathrm{~V} = -0.25 \mathrm{~V}$$
The value of x is 25.
Standard reduction potential for Cu²⁺/Cu, E° = 0.34 V
Ksp of Cu(OH)₂ = 1 × 10⁻²⁰
2.303RT/F = 0.059 V
pH = 14
First, we have the solubility equilibrium for Cu(OH)₂:
$$\mathrm{Cu}(\mathrm{OH})_2(\mathrm{~s}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$$
The Ksp expression for this reaction is:
$$\mathrm{Ksp}=\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{OH}^{-}\right]^2$$
At pH 14, the concentration of OH⁻ ions is 1 M:
$$\left[\mathrm{OH}^{-}\right] = 1 \mathrm{M}$$
Now we can find the concentration of Cu²⁺:
$$\left[\mathrm{Cu}^{2+}\right]=\frac{\mathrm{Ksp}}{\left[\mathrm{OH}^{-}\right]^2}=\frac{1 \times 10^{-20}}{1^2}=10^{-20} \mathrm{M}$$
The half-cell reaction for the reduction of Cu²⁺ is:
$$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$$
Now we can use the Nernst equation to calculate the reduction potential at pH 14:
$$E = E° - \frac{0.059}{n} \log_{10} \frac{1}{\left[\mathrm{Cu}^{2+}\right]}$$
Here, n = 2 (number of electrons transferred in the Cu²⁺/Cu couple).
$$E = 0.34 - \frac{0.059}{2} \log_{10} \frac{1}{10^{-20}}$$
$$E = 0.34 - \frac{0.059}{2} \times 20$$
$$E = 0.34 - 0.59$$
$$E = -0.25 \mathrm{~V}$$
Thus, the reduction potential at pH 14 for the Cu²⁺/Cu couple is -0.25 V. In terms of x × 10⁻² V:
$$(-) x \times 10^{-2} \mathrm{~V} = -0.25 \mathrm{~V}$$
The value of x is 25.
Comments (0)
