JEE MAIN - Chemistry (2023 - 10th April Evening Shift - No. 20)
The specific conductance of $$0.0025 ~\mathrm{M}$$ acetic acid is $$5 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$$ at a certain temperature. The dissociation constant of acetic acid is __________ $$\times ~10^{-7}$$ (Nearest integer)
Consider limiting molar conductivity of $$\mathrm{CH}_{3} \mathrm{COOH}$$ as $$400 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$$
Explanation
Given that the specific conductance, $k$, is $5 \times 10^{-5} ~S~cm^{-1}$ and the concentration, $C$, is $0.0025~M$, we can find the molar conductivity, $\lambda_m$, as follows:
$$\lambda_m = \frac{k}{C} \times 1000 = \frac{5 \times 10^{-5} \times 10^3}{0.0025} = \frac{5 \times 10^{-2}}{2.5 \times 10^{-3}} = 20 ~S~cm^2~mol^{-1}$$
Next, we find the degree of dissociation, $\alpha$, by dividing $\lambda_m$ by the limiting molar conductivity, $\lambda_m^o$:
$$\alpha = \frac{20}{400} = \frac{1}{20}$$
Finally, we use the formula for the dissociation constant of a weak acid, $K_a$:
$$K_a = \frac{C \alpha^{2}}{1-\alpha} = \frac{0.0025 \times \frac{1}{20} \times \frac{1}{20}}{\frac{19}{20}} = \frac{0.0025}{19 \times 20} = 6.6 \times 10^{-6} = 66 \times 10^{-7}$$
So, the correct answer is 66.
Comments (0)
