JEE MAIN - Chemistry (2022 - 29th July Evening Shift - No. 1)

Consider the reaction

$$4 \mathrm{HNO}_{3}(1)+3 \mathrm{KCl}(\mathrm{s}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{NOCl}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{KNO}_{3}(\mathrm{~s})$$

The amount of $$\mathrm{HNO}_{3}$$ required to produce $$110.0 \mathrm{~g}$$ of $$\mathrm{KNO}_{3}$$ is

(Given: Atomic masses of $$\mathrm{H}, \mathrm{O}, \mathrm{N}$$ and $$\mathrm{K}$$ are $$1,16,14$$ and 39, respectively.)

32.2 g
69.4 g
91.5 g
162.5 g

Explanation

$$ \begin{array}{r} 4 \mathrm{HNO}_{3}(\mathrm{l})+3 \mathrm{KCl}(\mathrm{s}) \longrightarrow \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{NOCl}(\mathrm{g})+ \\ 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{KNO}_{3}(\mathrm{~s}) \end{array} $$

$\because 110 \mathrm{~g}$ of $\mathrm{KNO}_{3} \Rightarrow$ moles of $\mathrm{KNO}_{3}=\frac{110}{101}$

$$ =1.089 \mathrm{~mol} $$

As, 4 mole of $\mathrm{HNO}_{3}$ produces $3 \mathrm{~mol}$ of $\mathrm{KNO}_{3}$.

Hence, the moles of $\mathrm{HNO}_{3}$ required to produce

$1.089$ moles of $\mathrm{KNO}_{3}=\frac{4}{3} \times 1.089=1.452 \mathrm{~mol}$

Hence, mass of $\mathrm{HNO}_{3}$ required is $1.452 \times 63$

$$ =91.5 \mathrm{~g} \text { } $$

Comments (0)

Advertisement