JEE MAIN - Chemistry (2022 - 24th June Morning Shift - No. 4)
For a reaction at equilibrium
A(g) $$\rightleftharpoons$$ B(g) + $${1 \over 2}$$ C(g)
the relation between dissociation constant (K), degree of dissociation ($$\alpha$$) and equilibrium pressure (p) is given by :
Explanation
Now,
$${K_P}$$ or $$K = {{{P_B} \times {{\left( {{P_C}} \right)}^{{1 \over 2}}}} \over {{P_A}}}$$
$$ = {{\left( {{\alpha \over {1 + {\alpha \over 2}}}} \right)P \times {{\left[ {\left( {{{{\alpha \over 2}} \over {1 + {\alpha \over 2}}}} \right)P} \right]}^{{1 \over 2}}}} \over {\left( {{{1 - \alpha } \over {1 + {\alpha \over 2}}}} \right)P}}$$
$$ = {{\left( {{{2\alpha } \over {2 + \alpha }}} \right)P \times {{\left[ {\left( {{\alpha \over {2 + \alpha }}} \right)P} \right]}^{{1 \over 2}}}} \over {\left( {{{2(1 - \alpha )} \over {2 + \alpha }}} \right)P}}$$
$$= {\alpha \over {1 - \alpha }} \times {\left( {{{\alpha P} \over {2 + \alpha }}} \right)^{{1 \over 2}}}$$
$$ = {{{\alpha ^{{3 \over 2}}}\,.\,{P^{{1 \over 2}}}} \over {(1 - \alpha ){{(2 + \alpha )}^{{1 \over 2}}}}}$$
Comments (0)
