JEE MAIN - Chemistry (2021 - 27th August Evening Shift - No. 22)

Data given for the following reaction is as follows :

FeO(s) + C(graphite) $$\to$$ Fe(s) + CO(g)

Substance $$\Delta H^\circ $$
(kJ mol$$^{ - 1}$$)
$$\Delta S^\circ $$
(J mol$$^{ - 1}$$ K$$^{ - 1}$$)
$$Fe{O_{(s)}}$$ $$ - 266.3$$ 57.49
$${C_{(graphite)}}$$ 0 5.74
$$F{e_{(s)}}$$ 0 27.28
$$C{O_{(g)}}$$ $$ - 110.5$$ 197.6


The minimum temperature in K at which the reaction becomes spontaneous is ___________. (Integer answer)
Answer
964

Explanation

$${T_{\min }} = \left( {{{{\Delta ^0}H} \over {{\Delta ^0}S}}} \right)$$

$${\Delta ^0}{H_{rxn}} = \left[ {\Delta _f^0H(Fe) + \Delta _f^0H(CO)} \right] - $$

$$ = \left[ {\Delta _f^0H(FeO) + \Delta _f^0H({C_{(graphite)}})} \right]$$

$$ = [0 - 110.5] - [ - 266.3 + 0]$$

= 155.8 kJ/mol

$${\Delta ^0}{S_{rxn}} = \left[ {{\Delta ^0}S(Fe) + {\Delta ^0}S(CO)} \right] - $$

$$\left[ {{\Delta ^0}S(FeO) + {\Delta ^0}S({C_{(graphite)}})} \right]$$

$$ = [27.28 + 197.6] - [57.49 + 5.74]$$

= 161.65 J/mol-K

$${T_{\min }} = {{155.8 \times {{10}^3}J/mol} \over {161.65J/mol - K}} = 963.8$$ K

$$ \simeq 964$$ k (nearest integer)

Comments (0)

Advertisement