JEE MAIN - Chemistry (2021 - 26th February Evening Shift - No. 17)

When 12.2 g of benzoic acid is dissolved in 100 g of water, the freezing point of solution was found to be $$-$$0.93$$^\circ$$C (Kf(H2O) = 1.86 K kg mol$$-$$1). The number (n) of benzoic acid molecules associated (assuming 100% association) is ___________.
Answer
2

Explanation

$\underset{\text{Benzoic acid}}{n \mathrm{PhCOOH}} \stackrel{\text { Association }}{\longrightarrow}(\mathrm{PhCOOH})_n$

Assuming $100 \%$ association ( $\alpha=1$ ),

$$ \Rightarrow i=1-\alpha\left(1-\frac{1}{n}\right)=\frac{1}{n}[\because \alpha+1] $$

Now, $\Delta T_f=K_f \times m \times i$

$$ 0-(0.93)=1.86 \times \frac{w_B \times 1000}{w_A \times M_B} \times \frac{1}{n} $$

$\left[\because w_B=\right.$ mass of $\mathrm{PhCOOH}=12.2 \mathrm{~g}$

$w_A=$ mass of $\mathrm{H}_2 \mathrm{O}=100 \mathrm{~g}$

$M_B=$ molar mass of $\left.\mathrm{PhCOOH}\right]$

$=122 \mathrm{~g} \mathrm{~mol}^{-1}$

$=1.86 \times \frac{12.2 \times 1000}{100 \times 122} \times \frac{1}{n}$

$$ \begin{aligned} \Rightarrow n &=\frac{1.86 \times 12.2 \times 1000}{0.93 \times 100 \times 122}=2 \end{aligned} $$

$\therefore$ Number of benzoic acid molecules associated, $n=2$

Comments (0)

Advertisement