JEE MAIN - Chemistry (2021 - 25th July Morning Shift - No. 20)

Consider the cell at 25$$^\circ$$C

Zn | Zn2+ (aq), (1M) || Fe3+ (aq), Fe2+ (aq) | Pt(s)

The fraction of total iron present as Fe3+ ion at the cell potential of 1.500 V is x $$\times$$ 10$$-$$2. The value of x is ______________. (Nearest integer)

(Given : $$E_{F{e^{3 + }}/F{e^{2 + }}}^0 = 0.77V$$, $$E_{Z{n^{2 + }}/Zn}^0 = - 0.76V$$)
Answer
24

Explanation

$$Zn\mathrel{\mathop{\kern0pt\longrightarrow} \limits_{}} Z{n^{2 + }} + 2{e^ - }$$

$$2F{e^{3 + }}\mathrel{\mathop{\kern0pt\longrightarrow} \limits_{}} 2{e^ - } + 2{e^{2 + }}$$

$$Zn + 2F{e^{3 + }}\buildrel {} \over \longrightarrow Z{n^{2 + }} + 2F{e^{2 + }}$$

$$E_{cell}^0 = 0.77 - (0.76)$$

$$ = 1.53$$ V

$$1.50 = 1.53 - {{0.06} \over 2}\log {\left( {{{F{e^{2 + }}} \over {F{e^{3 + }}}}} \right)^2}$$

$$\log \left( {{{F{e^{2 + }}} \over {F{e^{3 + }}}}} \right) = {{0.03} \over {0.06}} = {1 \over 2}$$

$${{[F{e^{2 + }}]} \over {[F{e^{3 + }}]}} = {10^{1/2}} = \sqrt {10} $$

$${{[F{e^{3 + }}]} \over {[F{e^{2 + }}]}} = {1 \over {\sqrt {10} }}$$

$${{[F{e^{3 + }}]} \over {[F{e^{2 + }}] + [F{e^{3 + }}]}} = {1 \over {1 + \sqrt {10} }} = {1 \over {4.16}}$$

= 0.2402

= 24 $$\times$$ 10-2

Comments (0)

Advertisement