JEE MAIN - Chemistry (2021 - 24th February Evening Shift - No. 21)

The magnitude of the change in oxidising power of the $$MnO_4^ - /M{n^{2 + }}$$ couple is x $$\times$$ 10$$-$$4 V, if the H+ concentration is decreased from 1M to 10$$-$$4 M at 25$$^\circ$$C. (Assume concentration of $$MnO_4^ - $$ and $$M{n^{2 + }}$$ to be same on change in H+ concentration). The value of x is ___________. $$\left[ {Given\,:{{2.303RT} \over F} = 0.059} \right]$$
Answer
3776

Explanation

Reaction,

$$MnO_4^ - + {H^ + } + 5{e^ - } \to M{n^{2 + }} + 4{H_2}O$$

n = 5

Applying Nernst equation, $${E_{cell}} = E_{cell}^o - {{0.0591} \over n}\log {{[P]} \over {[R]}}$$

or $${E_{cell}} = E_{cell}^o - {{0.0591} \over n}\log {{[M{n^{2 + }}]} \over {[MnO_4^ - ]}}{\left[ {{1 \over {{H^ + }}}} \right]^8}$$

(I) Given, [H+] = 1 M

$${E_1} = E^\circ - {{0.0591} \over 5}\log {{[M{n^{2 + }}]} \over {[MnO_4^ - ]}}$$

(II) Now, [H+] = 10$$-$$4 M

$${E_2} = E^\circ - {{0.0591} \over 5}\log {{[M{n^{2 + }}]} \over {[MnO_4^ - ]}} \times {1 \over {{{({{10}^{ - 4}})}^8}}}$$

$$\therefore$$ $$\left| {{E_1} - {E_2}} \right|$$

$$\left| {{E_1} - {E_2}} \right| = {{0.0591} \over 5} \times 32 = 0.3776\,V = 3776 \times {10^{ - 4}}$$

x = 3776

Comments (0)

Advertisement