JEE MAIN - Chemistry (2021 - 24th February Evening Shift - No. 18)

Assuming ideal behaviour, the magnitude of log K for the following reaction at 25$$^\circ$$C is x $$\times$$ 10$$-$$1. The value of x is ______________. (Integer answer)

$$3HC \equiv C{H_{(g)}} \rightleftharpoons {C_6}{H_{6(l)}}$$

[Given : $${\Delta _f}{G^o}(HC \equiv CH) = - 2.04 \times {10^5}$$ J mol$$-$$1 ; $${\Delta _f}{G^o}({C_6}{H_6}) = - 1.24 \times {10^5}$$ J mol$$-$$1 ; R = 8.314 J K-1 mol$$-$$1]
Answer
855

Explanation

Reaction,

$$\mathop {3HC \equiv CH(g)}\limits_{Acetylene} \to \mathop {{C_6}{H_6}(l)}\limits_{Benzene} $$

Given, $$\Delta G_f^o (CH \equiv CH) = - 2.04 \times {10^5}$$ J mol$$-$$1

$$\Delta G_f^o({C_6}{H_6}) = - 1.24 \times {10^5}$$ J mol$$-$$1

Gibb's free energy, $$\Delta G_f^o = - nRT\ln K$$

$$\Delta G_f^o = \sum {{{(\Delta G_F^o)}_P} - \sum {{{(\Delta G_F^o)}_R}} } $$

$$ - nRT\ln K = - n'RT\ln {K_p} - ( - n''RT\ln {K_f})$$

$$ \Rightarrow - RT\ln K = 1 \times ( - 1.24 \times {10^5}) - ( - 3 \times 2.04 \times {10^5}) $$

$$ \Rightarrow $$ $$- 2.303 \times R \times T\log K = 4.88 \times {10^5}$$

$$ \Rightarrow $$ $$\log K = - {{4.88 \times {{10}^5}} \over {2.303 \times 8.314 \times 273}}$$

$$ \Rightarrow $$ $$n\ln K = n'\ln {K_p} - ( - n''ln{K_f})$$

$$ \Rightarrow $$ K = 85.52

$$\Rightarrow$$ K = 855 $$\times$$ 10$$-$$1

x = 855

Comments (0)

Advertisement