JEE MAIN - Chemistry (2020 - 8th January Evening Slot - No. 11)

For an electrochemical cell

Sn(s) | Sn2+ (aq,1M)||Pb2+ (aq,1M)|Pb(s)

the ratio $${{\left[ {S{n^{2 + }}} \right]} \over {\left[ {P{b^{2 + }}} \right]}}$$ when this cell attains equilibrium is _________.

(Given $$E_{S{n^{2 + }}|Sn}^0 = - 0.14V$$,

$$E_{P{b^{2 + }}|Pb}^0 = - 0.13V$$, $${{2.303RT} \over F} = 0.06$$)
Answer
2.13TO2.16

Explanation

Cell reaction is :

Sn(s) + Pb+2(aq) $$ \to $$ Sn+2(aq) + Pb(s)

Apply Nernst equation :

Ecell = $$E_{cell}^0$$ - $${{0.06} \over 2}\log {{\left[ {S{n^{ + 2}}} \right]} \over {\left[ {P{b^{ + 2}}} \right]}}$$ ....(1)

$$ \Rightarrow $$ $$E_{cell}^0$$ = -0.13 + 0.14 = 0.01 V

At equilibrium : Ecell = 0

Substituting in (1), we get

0 = 0.01 - $${{0.06} \over 2}\log {{\left[ {S{n^{ + 2}}} \right]} \over {\left[ {P{b^{ + 2}}} \right]}}$$

$$ \Rightarrow $$ $$\log {{\left[ {S{n^{ + 2}}} \right]} \over {\left[ {P{b^{ + 2}}} \right]}}$$ = $${1 \over 3}$$

$$ \Rightarrow $$ $${{\left[ {S{n^{2 + }}} \right]} \over {\left[ {P{b^{2 + }}} \right]}}$$ = 2.15

Comments (0)

Advertisement