JEE MAIN - Chemistry (2019 - 8th April Evening Slot - No. 11)

For a reaction scheme $$A\buildrel {{k_1}} \over \longrightarrow B\buildrel {{k_2}} \over \longrightarrow C$$,

if the rate of formation of B is set to be zero then the concentration of B is given by :
$${k_1}{k_2}[A]$$
$$\left( {{{{k_1}} \over {{k_2}}}} \right)[A]$$
$$({k_1} + {k_2})[A]$$
$$({k_1} - {k_2})[A]$$

Explanation

Given, the rate of formation of B is set to be zero.

$$ \therefore $$ $${{d\left[ B \right]} \over {dt}} = 0$$

For this reaction,

$$A\mathrel{\mathop{\kern0pt\longrightarrow} \limits_{{R_1}}^{{k_1}}} B$$

Rate of reaction for this reaction (R1) = $${k_1}\left[ A \right]$$

For this reaction,

$$B\mathrel{\mathop{\kern0pt\longrightarrow} \limits_{{R_2}}^{{k_2}}} C$$

Rate of reaction for this reaction (R2) = $${k_2}\left[ B \right]$$

Net rate of formation of B = $${{d\left[ B \right]} \over {dt}}$$ = R1 - R2

As $${{d\left[ B \right]} \over {dt}} = 0$$

$$ \therefore $$ R1 - R2 = 0

$$ \Rightarrow $$ $${k_1}\left[ A \right]$$ - $${k_2}\left[ B \right]$$ = 0

$$ \Rightarrow $$ $$\left[ B \right] = {{{k_1}} \over {{k_2}}}\left[ A \right]$$

Comments (0)

Advertisement