JEE MAIN - Chemistry (2019 - 11th January Morning Slot - No. 2)

Consider the reaction
N2(g) + 3H2(g) $$\rightleftharpoons$$ 2NH3(g)

The equilibrium constant of the above reaction is Kp. If pure ammonia is left to dissociate, the partial pressure of ammonia at equilibrium is given by (Assume that PNH3 << Ptotal at equilibrium)
$${{{3^{{3 \over 2}}}{K_P^{{1 \over 2}}}{P^2}} \over 4}$$
$${{K_P^{{1 \over 2}}{P^2}} \over 4}$$
$${{{3^{{3 \over 2}}}{K_P^{{1 \over 2}}}{P^2}} \over 16}$$
$${{K_P^{{1 \over 2}}{P^2}} \over 16}$$

Explanation

N2(g) + 3H2(g) $$\rightleftharpoons$$ 2NH3(g) ; Keq = Kp

Write this equation reverse way,

2NH3(g)  $$\rightleftharpoons$$ N2(g) + 3H2(g) ; Keq = $${1 \over {{K_p}}}$$

2NH3(g) N2(g) + 3H2(g)
At t = 0 Po 0 0
At t = teq PNH3 p 3p

At equillibrium

PTotal = PNH3 + PN2 + PH2

= PNH3 + p + 3p

(As PNH3 << Ptotal so we can ignore PNH3)

$$ \therefore $$ PTotal = 4p

$$ \Rightarrow $$ p = $${{{{P_{total}}} \over 4}}$$

Formula of
Keq = $${{{p_{{N_2}}} \times {{\left( {{p_{{H_2}}}} \right)}^3}} \over {{{\left( {{p_{N{H_3}}}} \right)}^2}}}$$ = $${1 \over {{K_p}}}$$

$$ \Rightarrow $$ $${1 \over {{K_p}}}$$ = $${{p \times 27{p^3}} \over {{{\left( {{p_{N{H_3}}}} \right)}^2}}}$$

$$ \Rightarrow $$ $${{{\left( {{p_{N{H_3}}}} \right)}^2}}$$ = Kp $$ \times $$ 27 $$ \times $$ $${{{\left( {{{{P_{total}}} \over 4}} \right)}^4}}$$

$$ \Rightarrow $$ PNH3 = $$\sqrt {{K_p}} \times {\left( {27} \right)^{{1 \over 2}}} \times {\left( {{{{P_{Total}}} \over 4}} \right)^{{4 \over 2}}}$$

= $${{{3^{{3 \over 2}}}K_p^{{1 \over 2}}P_{Total}^2} \over {16}}$$

Comments (0)

Advertisement