JEE MAIN - Chemistry (2018 - 15th April Morning Slot - No. 16)
If x1, x2, . . ., xn and $${1 \over {{h_1}}}$$, $${1 \over {{h_2}}}$$, . . . , $${1 \over {{h_n}}}$$ are two A.P..s such that x3 = h2 = 8 and x8 = h7 = 20, then x5.h10 equals :
2560
2650
3200
1600
Explanation
Assume d1 is the common difference of A.P x1,x2 ..... xn
Given x3 = 8 and x8 = 20
$$ \therefore $$ x1 + 2d1 = 8 ..... (i)
and x1 + 7d1 = 20 ..... (ii)
Solving (i) and (ii) we get x1 = $$16 \over {15}$$ and d1 = $$12 \over {5}$$
Now let $$1 \over d_2$$ is the common difference of A.P $$1 \over h_1$$, $$1 \over h_2$$ ..... $$1 \over h_n$$
Given that,
h2 = 8 and h7 = 20
$$ \therefore $$ $$1 \over h_2$$ = $$1 \over 8$$
$$ \Rightarrow $$ $$1 \over h_1$$ + $$1 \over d_2$$ = $$1 \over 8$$ .... (iii)
and $$1 \over h_7$$ = $$1 \over 20$$
$$ \Rightarrow $$ $$1 \over h_1$$ + $$6 \over d_2$$ = $$1 \over 20$$ ... (iv)
Solving (iii) and (iv) we get
$$1 \over h_1$$ = $$28 \over 200$$ and $$1 \over d_2$$ = $$- {3 \over 200}$$
So, x5 = x1 + 4d1
= $$16 \over 5$$ + $$48 \over 5$$= $$64 \over 5$$ and
$$1 \over h_{10}$$ = $$1 \over h_1$$ + $$9 \over d_2$$
= $$28 \over 200$$ - $$27 \over 200$$ = $$1\over 200$$
$$ \therefore $$ x5 $$\times$$ h10 = $${64 \over 5} \times 200$$ = 2560
Given x3 = 8 and x8 = 20
$$ \therefore $$ x1 + 2d1 = 8 ..... (i)
and x1 + 7d1 = 20 ..... (ii)
Solving (i) and (ii) we get x1 = $$16 \over {15}$$ and d1 = $$12 \over {5}$$
Now let $$1 \over d_2$$ is the common difference of A.P $$1 \over h_1$$, $$1 \over h_2$$ ..... $$1 \over h_n$$
Given that,
h2 = 8 and h7 = 20
$$ \therefore $$ $$1 \over h_2$$ = $$1 \over 8$$
$$ \Rightarrow $$ $$1 \over h_1$$ + $$1 \over d_2$$ = $$1 \over 8$$ .... (iii)
and $$1 \over h_7$$ = $$1 \over 20$$
$$ \Rightarrow $$ $$1 \over h_1$$ + $$6 \over d_2$$ = $$1 \over 20$$ ... (iv)
Solving (iii) and (iv) we get
$$1 \over h_1$$ = $$28 \over 200$$ and $$1 \over d_2$$ = $$- {3 \over 200}$$
So, x5 = x1 + 4d1
= $$16 \over 5$$ + $$48 \over 5$$= $$64 \over 5$$ and
$$1 \over h_{10}$$ = $$1 \over h_1$$ + $$9 \over d_2$$
= $$28 \over 200$$ - $$27 \over 200$$ = $$1\over 200$$
$$ \therefore $$ x5 $$\times$$ h10 = $${64 \over 5} \times 200$$ = 2560
Comments (0)
