JEE MAIN - Chemistry (2018 - 15th April Evening Slot - No. 20)

Given

(i)   2Fe2O3(s) $$ \to $$ 4Fe(s) + 3O2(g);

$$\Delta $$rGo = + 1487.0 kJ mol-1

(ii)   2CO(g) + O2(g) $$ \to $$ 2CO2(g);

$$\Delta $$rGo = $$-$$ 514.4 kJ mol-1

Free energy change, $$\Delta $$rGo for the reaction

2Fe2O3(s) + 6CO(g) $$ \to $$ 4Fe(s) + 6CO2(g) will be :
$$-$$ 112.4 kJ mol-1
$$-$$ 56.2 kJ mol-1
$$-$$ 168.2 kJ mol-1
$$-$$ 208.0 kJ mol-1

Explanation

Given

(i)   2Fe2O3(s) $$ \to $$ 4Fe(s) + 3O2(g);

$$\Delta $$rGo = + 1487.0 kJ mol-1

(ii)   2CO(g) + O2(g) $$ \to $$ 2CO2(g);

$$\Delta $$rGo = $$-$$ 514.4 kJ mol-1

Multiply reaction (ii) with 3 and we get,

(iii)   6CO(g) + 3O2 (g)    $$\buildrel \, \over \longrightarrow $$    6CO2(g) ;

$$\Delta $$rGo = 3 $$ \times $$ $$-$$ 514.4 = $$-$$ 1543.2 kJ mol$$-$$1

Now add reaction (i)   with  (iii), we get

2Fe2O3(s) + 6CO(g)    $$\buildrel \, \over \longrightarrow $$    4Fe(s) + 6CO2(g)

$$\therefore\,\,\,$$ Free energy change of the reaction,

$$\Delta $$rGo  =  1487.0 $$-$$ 1543.2  =  $$-$$ 56.2 kJ/mol

Comments (0)

Advertisement