JEE MAIN - Chemistry (2014 (Offline) - No. 22)

For the non – stoichiometre reaction 2A + B $$\to$$ C + D, the following kinetic data were obtained in three separate experiments, all at 298 K.
Initial Concentration (A) Initial Concentration (B) Initial rate of formation of C (mol L-1 s-1)
0.1 M 0.1 M 1.2 x 10-3
0.1 M 0.2 M 1.2 x 10-3
0.2 M 0.1 M 2.4 x 10-3
The rate law for the formation of C is:
$${{dc} \over {dt}} = k[A]{[B]^2}$$
$${{dc} \over {dt}} = k[A]$$
$${{dc} \over {dt}} = k[A]{[B]}$$
$${{dc} \over {dt}} = k[A^2]{[B]}$$

Explanation

Let rate of reaction $$ = {{d\left[ C \right]} \over t} = k{\left[ A \right]^x}{\left[ B \right]^y}$$

Now from the given data

$$1.2 \times {10^{ - 3}} = k{\left[ {0.1} \right]^x}{\left[ {0.1} \right]^y}\,\,\,\,\,...\left( i \right)$$

$$1.2 \times {10^{ - 3}} = k{\left[ {0.1} \right]^x}{\left[ {0.2} \right]^y}\,\,\,\,\,...\left( {ii} \right)$$

$$2.4 \times {10^{ - 3}} = k{\left[ {0.2} \right]^x}{\left[ {0.1} \right]^y}\,\,\,\,...\left( {iii} \right)$$

Dividing equation $$(i)$$ by $$(ii)$$

$$ \Rightarrow \,\,\,\,{{1.2 \times {{10}^{ - 3}}} \over {1.2 \times {{10}^{ - 3}}}} = {{k{{\left[ {0.1} \right]}^x}{{\left[ {0.1} \right]}^y}} \over {k{{\left[ {0.1} \right]}^x}{{\left[ {0.2} \right]}^y}}}$$

We find, $$y=0$$

Now dividing equation $$(i)$$ by $$(iii)$$

$$ \Rightarrow \,\,\,\,{{1.2 \times {{10}^{ - 3}}} \over {2.4 \times {{10}^{ - 3}}}} = {{k{{\left[ {0.1} \right]}^x}{{\left[ {0.1} \right]}^y}} \over {k{{\left[ {0.2} \right]}^x}{{\left[ {0.1} \right]}^y}}}$$

We find, $$x=1$$

Hence $${{d\left[ C \right]} \over {dt}} = k{\left[ A \right]^1}{\left[ B \right]^0}$$

Comments (0)

Advertisement