JEE MAIN - Chemistry Hindi (2018 - 15th April Evening Slot - No. 20)
दिया गया है,
(i) $$2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{s}) \rightarrow 4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2} (g) ; \Delta_{\mathrm{r}} \mathrm{G}^{\circ}=+1487.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
(ii) $$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{g}); \Delta_{\mathrm{r}} \mathrm{G}^{\circ}=-514.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
अभिक्रिया, $$2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{s})+6 \mathrm{CO}(\mathrm{g}) \rightarrow 4 \mathrm{Fe}(\mathrm{s})+6 \mathrm{CO}_{2}(\mathrm{g})$$ के लिए मुक्त ऊर्जा परिवर्तन, $$\Delta_{\mathrm{r}} \mathrm{G}^{\circ}$$ होगा :
$$-112.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
$$-56.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
$$-168.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
$$-208.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$$
Comments (0)
