JAMB - Physics (2020 - No. 23)

Consider the three forces acting at O and in equilibrium as shown in the figure. Which of the following equations is/are CORRECT?

I. P\(_1\) cos \(\theta_1\) = p\(_1\) cos \(\theta_2\)

II. P\(_3\) = P\(_1\) cos \(\theta_4\)  + P\(_2 cos_2\)

III. P\(_1 \sin \theta_1 = P_2 \sin \theta_2\)

I only
II only
III only
I, II and III only

Explanation

resolving \(P_1\), \(P_2\) and \(P_3\) into x and y component 

\(P_x\) = \(P_1 Cos\theta_1\)

\(P_y\) = \(P_1Sin\theta_1\)

\(P_x\) = \(P_2Cos\theta_2\)

\(P_y\) = \(-P_2Sin \theta_2\)

\(P_x\) = \(- P_3Cos \theta0\)

therefore 

total \(P_x\) = \(P_1 Cos\theta_1\) + \(P_2Cos \theta_2\) +  \(- P_3Cos \theta0\) = 0

total \(P_y\) = \(P_1Sin\theta_1\) +  \(-P_2Sin \theta_2\) = 0

so that  \(P_1Sin\theta_1\) =  \(P_2Sin \theta_2\)

\( P_3Cos \theta0\) =  \(P_1 Cos\theta_1\) + \(P_2Cos \theta_2\)

 

Comments (0)

Advertisement