JAMB - Physics (1999 - No. 21)
The velocities of light in air and glass are 3.0 x 108ms-1 and 2.0 x 108ms-1 respectively. If the angle of refraction is 30°, the sine of the angle of incidence is
0.33
0.50
0.67
0.75
Explanation
Refractive index
= \(\frac{Sin i}{Sin r}\) = \(\frac{\text{Vel. of light in air}}{\text{vel. of light in glass}}\)
= \(\frac{Sin i}{Sin 30^o}\)= \(\frac{3.0 \times 10^8}{2.0 \times 10^8}\)
= Sin i = \(\frac{(3.0 \times 10^8 \times Sin 30^o)}{2.0 \times 10^8}\)
= Sin i = \(\frac{(3.0 \times 10^8 \times 0.5)}{2.0 \times 10^8}\)
= \(\frac{1.5}{2}\)
= 0.75
= \(\frac{Sin i}{Sin r}\) = \(\frac{\text{Vel. of light in air}}{\text{vel. of light in glass}}\)
= \(\frac{Sin i}{Sin 30^o}\)= \(\frac{3.0 \times 10^8}{2.0 \times 10^8}\)
= Sin i = \(\frac{(3.0 \times 10^8 \times Sin 30^o)}{2.0 \times 10^8}\)
= Sin i = \(\frac{(3.0 \times 10^8 \times 0.5)}{2.0 \times 10^8}\)
= \(\frac{1.5}{2}\)
= 0.75
Comments (0)
