JAMB - Mathematics (2024 - No. 44)

If A = \(\begin{pmatrix}3 & 2 & 1\\4 & 2 & -1\end{pmatrix}\) and B = \(\begin{pmatrix}1 & 4\\0 & 1\\3 & 2\end{pmatrix}\). Find A\(^T\) + B, ( where T means transpose)
\(\begin{pmatrix}4 & 8\\3 & 2\\4 & 1\end{pmatrix}\)
\(\begin{pmatrix}4 & -8\\3 & 2\\4 & 1\end{pmatrix}\)
\(\begin{pmatrix}4 & 8\\4 & -2\\3 & 1\end{pmatrix}\)
\(\begin{pmatrix}4 & 8\\2 & 3\\4 & 1\end{pmatrix}\)

Explanation

Given that A = \(\begin{pmatrix}3 & 2 & 1\\4 & 2 & -1\end{pmatrix}\) and  B = \(\begin{pmatrix}1 & 4\\0 & 1\\3 & 2\end{pmatrix}\)

A\(^T\) = \(\begin{pmatrix}3 & 4\\2 & 2\\1 & -1\end{pmatrix}\)

Find A\(^T\) + B = \(\begin{pmatrix}3 & 4\\2 & 2\\1 & -1\end{pmatrix}\) +  \(\begin{pmatrix}1 & 4\\0 & 1\\3 & 2\end{pmatrix}\) =  \(\begin{pmatrix}4 & 8\\2 & 3\\4 & 1\end{pmatrix}\)

 

Comments (0)

Advertisement