JAMB - Mathematics (2024 - No. 20)
Simplify \(\frac{ 5 + \sqrt{7}}{3 + \sqrt{7}}\)
17 - \(\sqrt{7}\)
4 - \(\sqrt{7}\)
7 - \(\sqrt{7}\)
15 - \(\sqrt{7}\)
Explanation
\(\frac{ 5 + \sqrt{7}}{3 + \sqrt{7}}\)
multiply the denominator and the numerator by the conjugate of 3 + \(\sqrt{7}\) → 3 - \(\sqrt{7}\)
\(\frac{ 5 + \sqrt{7}}{3 + \sqrt{7}}\) x \(\frac{3 - \sqrt{7}}{3 - \sqrt{7}}\)
\(\frac{15 - 5\sqrt{7} + 3\sqrt{7} - 7}{3^2 - (\sqrt{7})^2}\)
\(\frac{8 - 2\sqrt{7}}{9 - 7}\) = \(\frac{ 8 - 2\sqrt{7}}{2}\)
= 4 - \(\sqrt{7}\)
Comments (0)
