JAMB - Mathematics (2024 - No. 13)

Let A = \(\begin{pmatrix}2 & -4 & 3\\5 & 1 & 0\end{pmatrix}\) and B =  \(\begin{pmatrix}1 & 4 & -2\\-3 & 3 & -1\end{pmatrix}\). Find A + 2B
\(\begin{pmatrix}4 & 4 & -1\\-1 & 7 & -2\end{pmatrix}\)
\(\begin{pmatrix}-1 & 4 & -1\\4 & 7 & -2\end{pmatrix}\)
\(\begin{pmatrix}4 & 4 & -1\\7 & 7 & -2\end{pmatrix}\)
\(\begin{pmatrix}-1 & 7 & -2\\4 & 4 & -2\end{pmatrix}\)

Explanation

A = \(\begin{pmatrix}2 & -4 & 3\\5 & 1 & 0\end{pmatrix}\), B =  \(\begin{pmatrix}1 & 4 & -2\\-3 & 3 & -1\end{pmatrix}\)

2B = 2 x  \(\begin{pmatrix}1 & 4 & -2\\-3 & 3 & -1\end{pmatrix}\) =  \(\begin{pmatrix}2 & 8 & -4\\-6 & 6 & -2\end{pmatrix}\)

A + 2B =  \(\begin{pmatrix}2 & -4 & 3\\5 & 1 & 0\end{pmatrix}\) +  \(\begin{pmatrix}2 & 8 & -4\\-6 & 6 & -2\end{pmatrix}\) =  \(\begin{pmatrix}4 & 4 & -1\\-1 & 7 & -2\end{pmatrix}\)

Comments (0)

Advertisement