JAMB - Mathematics (2021 - No. 34)

If the binary operation \(\ast\) is defined by m \(\ast\) n = mn + m + n for any real number m and n, find the identity of the elements under this operation
e = 1
e = -1
e = -2
e = 0

Explanation

Identity(e) : a \(\ast\) e = a

m \(\ast\) e = m...(i)

m \(\ast\) e = me + m + e

Because m \(\ast\) e = m 

: m = me + m + e

m - m = e(m + 1)

e = \(\frac{0}{m + 1}\)

e = 0

 

Comments (0)

Advertisement